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Fig. 1. We present a method to synthesize indoor scenes using deep convolutional network priors trained on top-down views of scenes from a scene dataset.
Top: Bedroom, living room, and o�ice scenes from our dataset, along with scenes synthesized from our model. Bo�om: Our model generates scenes by
iteratively inserting one object at a time. Here we show one such object insertion sequence for the living room scene outlined in blue. Renders of intermediate
scenes are interleaved with a visualization of our model’s predicted spatial probability distribution for the type of object about to be inserted.

We present a convolutional neural network based approach for indoor scene
synthesis. By representing 3D scenes with a semantically-enriched image-
based representation based on orthographic top-down views, we learn con-
volutional object placement priors from the entire context of a room. Our
approach iteratively generates rooms from scratch, given only the room
architecture as input. Through a series of perceptual studies we compare
the plausibility of scenes generated using our method against baselines for
object selection and object arrangement, as well as scenes modeled by peo-
ple. We �nd that our method generates scenes that are preferred over the
baselines, and in some cases are equally preferred to human-created scenes.
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1 INTRODUCTION
People spend a large percentage of their lives indoors: in o�ces,
living rooms, bedrooms, and other interior spaces. A number of
industries use virtual reproductions of such indoor scenes: inte-
rior design, architecture, gaming and virtual reality are a few. A
computer model that understood the structure of such scenes well
enough to generate new ones could support such industries by en-
abling fully or semi-automatic population of indoor environments.
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Prior work has studied this problem of indoor scene synthesis:
given the architectural geometry of a room (i.e. its walls, �oor, and
ceiling), select a set of objects to place and arrange within the room.
Various approaches have been proposed, including constraint sat-
isfaction, optimization of hand-crafted interior design principles,
statistical priors on pairwise relationships between objects, and
human-centric relationship priors [Fisher et al. 2012, 2015; Fu et al.
2017; Merrell et al. 2011; Xu et al. 2002; Yu et al. 2011]. However,
unconstrained synthesis at room scale is still a challenging problem.
Prior work has either focused on modeling smaller, functional re-
gions within a larger room (i.e. a working desk) [Fisher et al. 2012],
or introduced additional inputs to constrain the problem: a �xed
set of objects and manually-annotated important relationships [Yu
et al. 2011], a sketch [Xu et al. 2013], a natural language descrip-
tion [Chang et al. 2014], or a 3D scan of a room [Chen et al. 2014;
Fisher et al. 2015].
Convolutional neural networks (CNNs) hold some promise in

addressing the scene synthesis problem, as they have been demon-
strated to reliably learn to recognize and generate visual patterns
and relationships in other graphics domains. Deep networks require
a large amount of training data, which would have prohibited their
use with the small scene datasets considered by early work on scene
synthesis. Recently, however, large datasets of 3D scenes have be-
come available [Song et al. 2017]. In this paper, we use such data
to train a CNN-based model to select and place objects in a room
given only the type of room desired and its wall structure as input.

To apply convolutional networks to the scene synthesis problem,
we leverage the insight that while an indoor room is a 3D space, most
objects that characterize a room are arranged on its 2D ground plane.
As such, we represent a room via an orthographic top-down view, a
representation on which a convolutional network can operate—just
as architects are trained to think of rooms as patterns of objects
on a �oor plan, so too do we train our neural networks. Our top-
down view representation is a semantically-enriched, multi-channel
image capturing multiple scene features per pixel, such as the type
of object present and its orientation. Applying layers of learnable
convolutions to this representation allows our model to process the
entire state of a room as context for its sampling decisions, capturing
patterns and relationships between objects . Our proposed model
generates a room by iteratively adding one object at a time, �rst
deciding whether to add another object before deciding which type
of object to place and where. Each of these decisions is governed by
a convolutional neural network.

Our contributions are:
(1) We present (to our knowledge) the �rst convolutional network-

based system for synthesizing indoor scenes from scratch:
our system takes as input only the geometry of the room in
which it should synthesize a scene.

(2) We introduce a new semantically-enriched, image-based rep-
resentation of scenes based on orthographic top-down views.

(3) Through a series of ablations, we analyze our learned convo-
lutional priors and show they capture common-sense patterns
of object arrangement given the state of a room.

(4) We perform forced-choice perceptual studies to compare the
plausibility of rooms generated using our method against

baselines for object selection and arrangement inspired by
prior work, as well as against rooms modeled by people.
Scenes generated by our method are preferred over the base-
lines, and in some cases are equally preferred to human-
created scenes.

After reviewing related work in Section 2, we give a high-level
overview of our approach in Section 3.We then introduce our dataset
and our image-based scene representation in Section 4 before de-
scribing the details of our generative model in Section 5. Finally,
Section 6 presents the results of our perceptual studies. Our code,
data, and pre-trained models are available at https://kwang-ether.
github.io/deep-synth/

2 RELATED WORK
Indoor Scene Synthesis and Furniture Layout: There is a large
body of existing work on synthesizing virtual interior scenes. Some
of the early work in this space is concerned with creating plausible
arrangements of a pre-speci�ed set of objects according to interior
design principles [Merrell et al. 2011] and simple statistical rela-
tionships between objects learned from examples [Yu et al. 2011].
Later work showed how to arrange objects in scenes where the set
of objects to be used can change, using a hand-written program to
specify priors over which objects may occur and their spatial rela-
tionships [Yeh et al. 2012]. Follow-on work from this has focused
on data-driven scene synthesis: rather than using a hand-written
program, learning priors over object occurrence and arrangement
from examples. The �rst such method learned separate priors for
occurrence and arrangement, using a directed graphical model of
object co-occurrence relationships and a Gaussian mixture model
of pairwise spatial relationships between objects [Fisher et al. 2012].
Various related methods have been proposed, modeling object occur-
rence and/or arrangement with undirected factor graphs [Kermani
et al. 2016], topic models [Liang et al. 2017], directed graphical mod-
els combined with Gaussian mixture arrangement patterns [Hen-
derson and Ferrari 2017], human-centric stochastic grammars [Qi
et al. 2018], and activity-based object relation graphs [Fu et al. 2017].
In contrast, our method uses deep convolutional networks to learn
priors over which objects should be in a scene and how they should
be arranged. These deep network priors use a view of the entire
scene as context, rather than attempting to build context from pair-
wise object relationships. They also couple the occurrence of objects
with their arrangement, as the model decides which objects to add
to the scene next based on the complete arrangement of objects that
have been added thus far.
Other related work has focused on generating virtual indoor

scenes given some sparse or low-�delity input representation. Meth-
ods have been proposed for generating scenes from sketches [Xu
et al. 2013], from noisy 3D scans [Fisher et al. 2015], or given text
descriptions [Chang et al. 2014], all of which extend scene synthesis
methods from the list above [Fisher et al. 2012]. We believe that our
models could be used as the underlying synthesis models for these
types of tasks, as well.

Deep Generative Models: Generative models based on deep neu-
ral networks have become popular in recent years. Deep latent
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Fig. 2. Overview of our scene synthesis pipeline. Our generative model synthesizes scenes one object at a time. Given an input scene S, it first computes a
top-down view of the scene V (S) with multiple features per pixel (Section 4.1). Next, it analyzes this image to determine whether to add another object
(Section 5.1). Then, it chooses a location at which to add the next object, and what category of object to add (Section 5.2). Given a location and category, it
selects a instance of that category from a model database and adds it to the scene at an appropriate orientation (Section 5.3). These model components are
implemented using deep convolutional networks.

variable models, such as variational autoencoders (VAEs) and gen-
erative adversarial networks (GANs), are perhaps the most well-
known [Goodfellow et al. 2014; Kingma and Welling 2014]. These
models can jointly generate an entire image at once from a latent
random code; conditional versions can take an image as input [Isola
et al. 2017]. While one could cast scene synthesis as an image-to-
image problem (i.e. map an image of an empty room to an image of
a room with objects), conditional GANs struggle to capture multiple
modes of output variation. Recent work helps with generating local
appearance variation [Zhu et al. 2017], but generating geometric va-
riety (as our setting requires) remains an open problem. Instead, we
synthesize indoor scenes one object at a time. This better matches
the iterative object placement process for constructing real-world
scenes and allows using the same model in multiple applications:
auto-completing partial rooms, suggesting likely next objects to
place, or suggesting likely objects at a given location.
Many similar methods for sequentially generating 2D or 3D vi-

sual content have also been proposed recently. Several are based on
recurrent neural networks: DRAW [Gregor et al. 2015] and AIR [Es-
lami et al. 2016] are both recurrent variational models that generate
and reconstruct images, and sketch-rnn uses a recurrent model to
generate vector drawings as a sequence of strokes [Ha and Eck
2017]. There are also recurrent models of 3D shapes, decomposing
shapes into either a sequence of primitive boxes [Zou et al. 2017] or
constructive solid geometry operations [Sharma et al. 2017].
Rather than use a recurrent architecture, our model autoregres-

sively predicts its next decision based on the cumulative result of
all decisions it has made thus far (in the form of the current partial
scene). This “predict distribution, sample, repeat" approach is similar
in spirit to the well-known PixelCNN [van den Oord et al. 2016] and
WaveNet [Van Den Oord et al. 2016]. More closely-related works
also adopt this approach, including methods for controlling the out-
put of procedural models [Ritchie et al. 2016], inferring drawing
programs from hand-drawn sketches [Ellis et al. 2017], or suggest-
ing components to add to a partially-complete 3D shape [Sung et al.
2017].

View-based CNNs for 3D Content: Our model uses deep convo-
lutional networks which operate on a view of a 3D scene. Many
other recent works use view-based convolutional networks to an-
alyze 3D objects, to perform object classi�cation [Su et al. 2015],

perform semantic segmentation [Kalogerakis et al. 2017], learn lo-
cal shape descriptors from correspondences [Huang et al. 2017], or
learn stylistic similarity between objects [Lim et al. 2016].

These methods use multiple views of a single 3D object, whereas
as our method uses a top-down view of a larger 3D scene. In that
respect, it bears resemblance to the high-level character controller
from the DeepLoco system, which uses a convolutional network
on a top-down depth map view of the surrounding environment to
predict a footstep plan for a bipedal character [Peng et al. 2017].

3 APPROACH
This paper focuses on learning generative models of indoor scenes,
speci�cally, rooms that contain one or more objects. The input
to our method is a room, i.e. geometry describing �oor, walls, and
ceiling. In this work, we focus on generating and arranging major
functional objects such as furniture which are placed on the �oor.
We do not address wall-mounted or second-tier objects (i.e. objects
placed on top of other objects), though we discuss straightforward
extensions to support these features in Section 7.

Our goal is to build a generative model of scenes that can encode
complex dependencies and relationships involving objects and the
room geometry. We use deep networks as the major building block
of our model, as they have been shown to reliably recognize and
generate complex visual patterns in other visual domains. To do
this, we exploit the fact that while indoor scenes exist in 3D space,
gravity dictates that most objects are arranged on the 2D �oor plane.
Thus, we can apply 2D convolutional networks to a top-down view
representation V (S) of a scene S, where the networks learn to
recognize the presence of and relationships between objects.
Since scenes are composed of a set of discrete objects, we use

a model architecture that generates a scene iteratively, adding ob-
jects one-by-one. This sequential paradigm has been frequently
used to model other visual content that decomposes into discrete
components [Ellis et al. 2017; Ha and Eck 2017; Ritchie et al. 2016;
Sharma et al. 2017; Sung et al. 2017; Zou et al. 2017]. Figure 2 shows
a schematic overview of one iteration our method, somewhere in
the middle of a synthesis sequence. Our model �rst takes the scene
constructed thus far and renders a top-down view of it. This top-
down view is augmented with multiple semantic features, such as
the category of the object at each pixel (Section 4.1). This viewV (S)
of a scene S is an image-based representation of the scene that can
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Fig. 3. Image channels included in our top-down view representation V (S) of a scene S. Object category channels not shown, for brevity. Orientation is
visualized by normalizing cos � and sin � to [0, 1] and mapping them to the red and green channels of an RGB image.

be analyzed by convolutional networks (CNNs); it is used as input
by several CNN-based components of our model.

The �rst of these components predicts whether the model should
keep adding objects to the scene (Section 5.1). If this component
returns true, the next model component chooses a category of object
to add and a location at which to add it. This component works
by building a probability distribution of possible object categories
across many possible scene locations, then sampling from that dis-
tribution (Section 5.2). Given an object category and location, the
model must then instantiate a particular object that belongs to that
category at that location, orienting the object appropriately in the
process (Section 5.3). These three model components all use deep
convolutional networks which take the scene view as input. These
networks are trained on scenes sampled from a large database of 3D
scenes; Section 4 describes our method of constructing training data
in detail. Figure 1 Bottom shows a scene synthesized by executing
multiple iterations of this process.

4 DATASET
Learning a deep network-based model requires a large amount of
training data. To train our model, we use the SUNCG dataset [Song
et al. 2017], a large database of virtual 3D scenes created by users
of the online Planner5d interior design tool [Planner5d 2017]. The
dataset contains over 45,000 3D scenes, with each scene segmented
into individual rooms labeled with a room type (e.g. bedroom, liv-
ing room) or multiple room types. In this work, we consider three
di�erent types of rooms that occur frequently both in residential
interior environments and in the SUNCG dataset: bedrooms, living
rooms, and o�ces. As the SUNCG dataset is large and noisy, we �rst
do some preprocessing by �ltering out certain rooms and certain
types of objects from rooms. Appendix A provides more details on
these �lters. After �ltering, we are left with 8, 398 bedrooms, 1, 238
o�ces, and 1, 452 living rooms. For each room type, we hold out
250 rooms for validation and testing and use the rest for training.

4.1 Top-down View Representation
As mentioned previously, indoor rooms are largely characterized
by the 2D layout of objects on the �oor; much prior work on scene
synthesis phrases the problem in terms of determining 2D positions
and 1D orientations of objects on a supporting surface [Fisher et al.
2012; Merrell et al. 2011; Yu et al. 2011]. Likewise, we convert 3D
rooms into a 2D layout representation that our model operates on

using deep convolutional networks. Speci�cally, we represent the
scene S as a multi-channel top-down viewV (S). The base of this
representation is an orthographic top-down depth render of the
room, i.e. a heightmap. This render maps a 6m ⇥ 6m region into a
512 ⇥ 512 image. Discrete-sampled heightmaps have been used for
scene synthesis before, as a coarse representation of the geometry
of a scanned 3D scene that synthesis should match [Fisher et al.
2015].
With this height map alone, the deep networks in our model

would be forced to use some of their representational capacity to
learn how to detect semantic features in the height map, such as
the boundaries, orientations and categories of objects (and this may
or may not succeed). Instead, we encode such semantic features as
additional channels in the top-down view image. The �nal image
has the following information at each pixel, which defaults to 0:

Depth: Depth from the camera.
Room mask: Takes a value of 1 when inside the room.
Wall mask: Takes a value of 0.5 for walls and 1 for doors/windows.
Object mask: Indicates the number of objects present. Each object
adds 0.5 to the pixel value.
Orientation: The orientation of the object contained by the pixel,
represented by an angle � about the world-up vector. � is expressed
in a local coordinate frame that is consistent across all objects. We
encode this information into the image using two channels, one for
sin� and one for cos� (i.e. a polar-to-rectangular transform).
Category: The category of the object(s) contained by the pixel. For
each category, including doors and windows, we add a channel that
stores the number of objects of that category.

Figure 3 shows what some of these channels look like for a typical
room. This representation has C + 6 channels total, where C is the
number of possible categories for the type of room. In our dataset,
C ranges from 21 (living room, o�ce) to 31 (bedroom). Though we
do not experience hardware or training problems with this repre-
sentation, for signi�cantly larger C , it may become necessary to
instead learn a �xed-dimensional representation for object cate-
gories, serving a similar function as word embeddings in natural
language data [Mikolov et al. 2013]. We leave such an e�ort for
future work.
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pcontinue = 0.99 pcontinue = 0.64

pcontinue = 0.35 pcontinue = 0.03

Fig. 4. Predicted pcontinue values for partial bedroom scenes from our
dataset. Clockwise from top le�: the absence of a bed leads to continue
probability near 1.0, a scene with a bed has lower continue probability but
still above 0.5, a scene that is complete enough to terminate but could still
have more objects added, a scene that is completely full and thus has nearly
0 continue probability.

5 GENERATIVE MODEL
Our model generates a scene S by iteratively placing one object at
a time, where the existence and con�guration of the object being
placed is conditioned on the state of the scene thus far. Each iteration
of our model decomposes into three steps: deciding whether to add
another object (Continue?), deciding what category of object to
add and where (CategoryLocation), and inserting an instance of
that object category into the scene (InstanceOrientation).

5.1 When to stop adding objects
The �rst component of our model, Continue?, decides whether the
model should add another object to S or should terminate. It is a
function which takes as input the current scene S and outputs a
Bernoulli distribution pcontinue (>|S), i.e. the probability that ‘con-
tinue adding objects’ is true (i.e. logical >) given the current scene
S. We encapsulate the current state of the scene by two sets of
features. First, we use a vector of counts of each category of ob-
ject already present in the scene, counts(S). This provides global
information about the state of the scene that may be important for
making continue/terminate decisions, e.g. a bedroom with zero beds
must continue adding objects. Second, we extract high-level features
from the top-down view representation of the scene V (S) using
a deep convolutional network. These features provide information
about whether the current set of scene objects represents a complete
scene for the given room, e.g. while a single bed and nightstand may
be su�cient for a tiny, narrow room, a large bedroom requires more
objects. We then apply a multilayer feed-forward neural network

(MLP) to compute the probability of continuing:

pcontinue (>|S) = � (MLP([counts(S),CNN(V (S))]))
where [·] is vector concatenation and � is the logistic sigmoid.

We build a training set for Continue?with 50% negative examples
(complete rooms from our dataset) and 50% positive examples (rooms
with a random number of random objects removed). Figure 4 shows
some partial bedroom scenes from our dataset with their predicted
pcontinue values. In the upper left scene, the room has no bed and
thus pcontinue is near 1. The upper right scene has a bed but is
otherwise somewhat sparse; pcontinue is lower but still above 0.5.
The lower left scene has enough appropriate objects to be reasonably
considered a ‘complete’ bedroom, and thus has pcontinue < 0.5, but
it also has space for more objects. Finally, the lower right scene is
completely packed with objects, leading to a pcontinue near 0.
We train Continue? using the standard binary cross entropy

loss. At synthesis time, we terminate synthesis when pcontinue falls
below 0.5 (i.e. the classi�cation decision boundary).

If Continue? decides to add another object, our model must then
decide both which category of object to add and also where in
the room to add it. These two decisions are strongly correlated:
some locations only make sense for certain types of objects, and
vice versa. Ideally, we would like our model to learn the joint dis-
tribution p (c,x ,� |S) over all categories and all possible locations
in the scene. To make this problem amenable to the use of con-
volutional networks, we instead learn a conditional distribution.
Speci�cally, our next model component CategoryLocation com-
putes pcat (c |S,x ,�), the probability that c is the category which
should be added to scene S at location (x ,�). This structure is simi-
lar to the ‘action map’ representation used in prior work to encode
probabilities of di�erent human activities taking place across dif-
ferent parts of a scene [Savva et al. 2014]. Later, we describe how
we construct the joint distribution from this conditional and then
sample from it.

5.2 What category of object to add next (and where)
To compute these probabilities, CategoryLocation uses a similar
structure as Continue?: a convolutional network to extract spatial
features from the current state of the room, along with the room’s
current category counts. Since CategoryLocation computes proba-
bilities for a particular location (x ,�), it must incorporate additional
information to instruct the CNN to attend to that location. For this
purpose, we add an additional attention mask channel to the top-
down view imageV (S). This is an imageMattn (x ,�) containing
a small (9 ⇥ 9) mask centered about (x ,�); Figure 5 shows some
examples. Category probabilities are then computed as

fcat (c |S,x ,�) = MLP([counts(S),CNN([V (S),Mattn (x ,�)])])

pcat (c |S,x ,�) =
exp( fcat (c |S,x ,�))P
c 0 exp( fcat (c

0 |S,x ,�))
i.e. we compute fcat (c |S,x ,�) and then normalize it using a softmax
activation. Figure 6 Top visualizes a few representative examples of
these probabilities evaluated across all locations in a scene.

pcat (c |S,x ,�) gives a probability distribution over object cate-
gories with centroid at location (x ,�). As it is a distribution, it sums
to one, which would imply that there is some object centroid at every
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3D Scene Top-Down ViewV MaskMa�n (x ,�)

Fig. 5. Illustrating the training examples (x, �, c ) used to train
CategoryLocation. The colored boxes are centered around the location
(x, � ). Top: an example where c = ‘nightstand’. The third column shows
the a�ention maskMa�n (x, � ). Bo�om: an example where c = ‘no object’.

Nightstand TV Stand O�ce Chair

Existing Obj. Centroid No Obj. Centroid Outside Room

Fig. 6. Examples of predicted category probabilities for all locations in a
scene. Top: predicted probabilities for several object categories in di�erent
scenes. Bo�om: predicted probabilities for auxiliary categories for the same
bedroom scene.

location. This is obviously implausible: a large fraction of locations
in a �nished room remain unoccupied by objects, to permit human
movement. Thus, we augment the set of object categories with an
auxiliary category for ‘no object centroid.’ We also add auxiliary
categories for ‘existing object centroid’ (i.e. a location in the scene
already occupied by an object centroid) and for ‘outside room,’ to
allow CategoryLocation to learn how such locations di�er from
those in which object centroids may be placed. Figure 6 Bottom
shows probabilities for these categories across an example scene.

DepthOnly NoCategories All

0% auxiliary 50% auxiliary 90% auxiliary

Fig. 7. Example object category location distributions predicted by the
CategoryLocation network with certain features omi�ed. Top: Predicted
distributions for the centroid of a bed with scene view features excluded.
Only when all features are present does the distribution avoid parts of
the scene that would block the door in the upper-right. Bo�om: Predicted
distributions for a wardrobe, varying the percentage of auxiliary category
examples in the training data. A high percentage is needed to learn a distri-
bution that is flush against the walls.

Training: To generate training examples for CategoryLocation,
we take rooms from our dataset and randomly remove objects from
them. To generate examples for object categories, we choose a ran-
dom removed object and generate an attention maskMattn (x ,�)
about that object’s centroid (x ,�). To generate examples for auxil-
iary categories, we choose a random point that is outside the room,
in empty space within the room, or within an existing object, and
we generate an attention mask about that point. Figure 5 illustrates
two examples of this process. We generate training sets with 95%
auxiliary category examples and 5% object category examples. This
balance makes intuitive sense, given the sparsity of object centroid
locations in a scene. The low proportion of object category examples
can cause the network to train slowly; to speed this up, we start
training with only object category examples and gradually increase
the percentage of auxiliary category examples to 95%.

Given the large number of possible conditioning inputs (S,x ,�),
the network may not see enough cases to learn rarer rules, e.g. not
to place a third bed in a bedroom that already has two. To help
with this situation, we train CategoryLocation with the standard
categorical cross entropy loss along with an additional loss Lglobal.
This loss provides additional global context by penalizing the model
for assigning probability to categories not in the set Cremoved of
object categories removed from the current partial training scene.
We enforce this loss more strictly for nearly-complete partial train-
ing scenes, linearly scaling it based on the ratio of the number of
objects in the partial scene to that of the complete scene:

Lglobal =
Npartial
Ncomplete

X
p (c ) 8c < Cremoved

Ablations: We also trained versions of CategoryLocation with
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features omitted from the scene view imagesV (S). In addition to
the full set of image features (All), we considered scenarios with
the category mask channels removed (NoCategories) and with all
channels except depth removed (DepthOnly). We also experimented
with the percentage of auxiliary category examples (NoObject, Ex-
istingObject, OutsideRoom) in the dataset used to train the Catego-
ryLocation network. Figure 7 shows typical predicted distributions
for each setting. In the top row, we show how all the features are
needed to prevent the predicted location distribution for beds to
place probability mass in locations that would block the door (upper
right of the room). In the bottom row, we show how increasing the
percentage of auxiliary category examples in the training data re-
moves spurious probability mass from the distribution for wardrobe
locations, leading to a distribution that plausibly concentrates its
mass along available walls.

Sampling: To sample a new category and location at synthesis
time, we need to construct a joint distribution p (c,x ,� |S) using
the values of pcat (c |S,x ,�). To make this problem tractable, we
consider candidate locations on a N ⇥ N regular grid de�ned over
the scene. We then need to de�ne a prior distribution p (x ,� |S)
over grid locations. Since we have already taken into account the
probability of objects being present/absent at a particular location
through the use of auxiliary categories, we can use a uniform prior
p (x ,� |S) = 1

NN . Our joint distribution is then, by the chain rule:

p (c,x ,� |S) = pcat (c |S,x ,�) ·
1

NN

For brevity, we drop the conditioning on the current scene S for
the remainder of this section.
p (c,x ,�) is a three dimensional discrete distribution of size C ⇥

N ⇥ N , where C is the number of categories. When sampling from
large generative models such as this one trained on a high volume
of noisy data, it is common practice to suppress noise in the dis-
tribution by adjusting the model’s temperature, i.e. taking p1/� for
some temperature value � (see e.g. [Andrej Karpathy 2015; Ha and
Eck 2017]). We also temper the joint category-location distribution
p (c,x ,�), though we have found a two-step tempering scheme to
perform better. We �rst temper the spatial probability distributions
for each category c:

p (c ) =
NX

x=1

NX

�=1
p (c,x ,�)

p
1/�1 (x ,� |c ) = p (c,x ,�)1/�1

PN
x=1
PN
�=1 p (c,x ,�)

1/�1

f1 (c,x ,�) = p
1/�1 (x ,� |c ) · p (c )

Here, f1 (c,x ,�) is a density with the same shape as p (c,x ,�), but
with noise suppressed and high-probability modes highlighted for
each category c . We then temper the overall spatial density f1 (x ,�):

f1 (x ,�) =
CX

c=1
f1 (c,x ,�)

f1 (c |x ,�) = f1 (c,x ,�)/f1 (x ,�)

f2 (c,x ,�) = f1 (c |x ,�) · f1 (x ,�)1/�2

Initial Scene pinst < 10�6 pinst > 0.99

Fig. 8. Using the InstanceOrientation network to predict the validity of
inserting model instances at di�erent orientations. Inserting the double bed
at the correct orientation with respect to the wall has probability near 1,
whereas the opposite orientation is clearly recognized as being incorrect
with probability near 0.

After this step, f2 (c,x ,�) has suppressed overall low-probability
locations, but without changing the relative probability of cate-
gories at any location. We then normalize f2 to produce the �nal
distribution p⇤ from which our model samples:

p
⇤ (c,x ,�) =

f2 (c,x ,�)
PC
c=1
PN
x=1
PN
�=1 f2 (c,x ,�)

We set �1 = 0.25 and �2 = 0.4 for all the results shown in this paper.
At synthesis time, we use a 32 ⇥ 32 grid (i.e. N = 32) to sample

a location (x ,�) and a category c . To obtain a more �ne-tuned
location, we then use a 16 ⇥ 16 grid within the previously-sampled
grid cell, constrain the category to c , and choose the location which
maximizes p⇤ (x ,� |c )).

5.3 Placing an object instance
Given a location (x ,�) and an object category c , our model’s �nal
step is to insert an instance of that category at that location. Here,
‘instance’ refers to a speci�c 3D model. In our work, we draw these
3D models from the set of models used in the SUNCG dataset.
There can be many possible instances for a given category (for

example, there are nearly 300 chair models in SUNCG), not all of
which are visually compatible with one another. Thus, we �rst
restrict the set of instances considered to those likely to be compat-
ible with existing objects in the room. SUNCG, having originated
from an interior design tool, contains many 3D models drawn from
stylistically-consistent collections of furniture. We annotated all
SUNCG 3D models with their collection. At synthesis time, we al-
low the insertion of instances that come from the same collection as
another object already in the room. We relax this constraint slightly
by also allowing instances that co-occur in the same SUNCG scene
with another object already in the room. Prior work has developed
more sophisticated approaches for measuring the style compatibility
of 3D furniture models in terms of their geometry [Liu et al. 2015]
or materials [Chen et al. 2015]; such methods could also be applied
here.

To insert an instance into the room, our model must also choose
an orientation for that instance, where orientation is de�ned as a
single angle � about the gravity vector. To do this, we use a third and
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�nal convolutional network component, InstanceOrientation.
This component inserts a candidate instance i into the scene at
a candidate orientation � , and then evaluates a network which
returns pinst (>|S, i,x ,�,� ), the probability that inserting instance i
at (x ,�,� ) is a valid addition to the scene S. InstanceOrientation
augments the top-down scene view V (S) with a mask for the
geometry of the inserted instance,Mgeo (i,x ,�,� ). It computes the
probability of the insertion as

pinst (>|S, i,x ,�,� ) = � (MLP(CNN([V (S),Mgeo (i,x ,�,� )]))

Figure 8 shows an example of pinst discriminating between a valid
and an invalid insertion.

We train InstanceOrientation by taking rooms from our dataset,
again removing a random set of objects from each room, and then
selecting one removed object to be re-inserted. We generate 50%
positive training examples by inserting the object at its original ori-
entation, and 50% negative training examples by inserting the object
at a di�erent orientation. For these negative example orientations,
we quantize [0, 2� ] into 16 discrete orientations with the object’s
original orientation at 0, and we select from among the 15 other
orientations. Training uses the standard binary cross entropy loss.
At synthesis time, our model tries to insert all of the allowed in-

stances at each of 16 discrete orientations and chooses the collision-
free insertion with highest probability. If there is no collision free
insertion or no insertionwith probability higher than 50%, ourmodel
resamples a di�erent (x ,�, c ) tuple from CategoryLocation. We au-
tomatically reject any synthesized room that uses more than 20 such
resampling steps. In our experiments, this was ⇠ 20% of synthesized
bedrooms, ⇠ 15% of o�ces, and < 1% of living rooms. Rooms that
are not rejected use on average less than three resampling steps.

5.4 Details and timings
We implement our neural networks in PyTorch [Paszke et al. 2017].
All the convolutional networks use the same architecture, the Resnet-
101 architecture [He et al. 2016] (modi�ed to use 512 ⇥ 512 images
as input). The set of features fcnn output by these networks has
size 2048. The MLP networks contain three fully-connected layers
with input sizes 2048+C , 2048, and 1024, respectively. We use ReLU
activation and batch normalization between these layers.
We train our networks on NVIDIA GeForce GTX 1080 Ti GPUs,

using the Adam optimizer [Kingma and Ba 2015]. Training takes
6 hours for Continue? and 2 days for CategoryLocation and In-

stanceOrientation. Continue? and InstanceOrientation can
both be interpreted as binary classi�ers, so we can evaluate their
classi�cation accuracy: Continue? reaches ⇠ 85% validation accu-
racy on average across all room types, and InstanceOrientation

reaches ⇠ 94%.
At synthesis time, evaluating CategoryLocation for a 32 ⇥ 32

grid of scene locations takes 25 seconds, and placing an object
instance takes on average 20 seconds. This lead to an average overall
room synthesis time of 4 minutes. In Section 7, we discuss possible
approaches to reduce this computation time.

6 RESULTS AND EVALUATION
In this section, we evaluate our model’s ability to generate plausible
rooms with characteristics similar to the SUNCG training scenes.

To do this, we compare scenes synthesized by our model to several
baselines using perceptual studies on Amazon Mechanical Turk. All
of these comparisons use the same study design, which extends that
of prior work on evaluating automatic image colorization meth-
ods [Zhang et al. 2016]. Study participants were given a series of
forced-choice image comparison tasks. Each task displayed a pair
of images, one depicting a scene synthesized by our model and
the other from a baseline source. Both scenes used the same room
geometry. The order of images within each pair was randomized.
The objects in each scene image were colored according to their
category, so that participants would make judgments based on the
types of objects present and their arrangement, and not based on
extraneous factors such as object materials. The task instructed
participants to choose the image from the pair which they think
depicts a more plausible arrangement of objects in the room. Each
participant performed 55 comparison tasks. One out of each 11 tasks
was a ‘vigilance test’: a comparison with an obviously wrong answer
(speci�cally, one image depicted a randomized, jumbled arrange-
ment of random objects). For each study on each room type, we
collected responses from 10 AMT Master workers (workers AMT
identi�es as consistently high-performing) and discarded all re-
sponses from workers who did not achieve 100% accuracy on the
vigilance tests.

Comparison against independently selecting scene objects:
Most prior scene synthesis methods �rst generate a set of objects
for the scene, then arrange those objects. In contrast, our method
adds each object based on the existence and arrangement of all
objects added before it. In theory, our method can more reliably
produce higher-quality scenes, since it is sensitive to the size and
shape of the room and what objects can plausibly be used in it, as
opposed to independently generating a set of objects that is plausible
‘on average.’ We conduct an experiment to determine whether this
advantage is visible in practice.

As a baseline method for independently generating a set of object
categories, we use a Neural Autoregressive Distribution Estima-
tor (NADE) [Uria et al. 2016]. A NADE is a learnable model for
probability distributions over a sequence of variables, where the
distribution over variable i is a function of the values of variables 1
through i � 1. We model distribution over the number of instances
of each object category occurring in a scene, which can be repre-
sented as a sequence of categorical variables (x1,x2, . . .), with one
variable for each category of object that may occur. If xi is a variable
with Di possible count values (including zero), then its probability
distribution is a categorical distribution computed as follows:

p (xi |x<i ) = softmax(Vihi + bi )
hi = sigmoid(ai )
ai = xi�1wi + ai�1 , where a1 = c

where Vi 2 RDi⇥H , bi 2 RDi , wi 2 RH , c 2 RH are the learnable
parameters of the NADE, with H being the NADE’s hidden layer
size. We use this model as a stand-in for Bayesian networks, topic
models, and other approaches that have been used to model the
distribution of objects in a scene. We train the NADE with the same
set of training scenes used to train our model.
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Comparison Room Type

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio

Occurrence Baseline bedroom
living
office

Arrangement Baseline bedroom
living
office

Human bedroom
living
office

Fig. 9. Results of Mechanical Turk forced-choice perceptual studies comparing scenes synthesized by our method to those from several baselines. Blue lines
show the percentage of time that our method was chosen, with gray bars showing 95% confidence intervals computed by bootstrap [Efron and Tibshirani
1986]. Over all room types, scenes generated by our method are significantly preferred to those generated by first sampling a set of objects and then arranging
them using our model (Occurrence Baseline). When arranging a fixed set of objects, our model is also significantly preferred over a model based on pairwise
object relationship statistics (Arrangement Baseline). Compared to human-created scenes from our test dataset, our generated scenes are equally preferred for
o�ice scenes, and slightly less preferred for bedroom and living room scenes.

Occurrence Baseline

Ours

Human

(a) (b) (c) (d) (e)
Fig. 10. Comparison of outputs using baseline occurrence model (top) and our full model (middle), with original human-designed scenes (bo�om). Columns
(a), (c) and (d) show examples where the baseline model results in too sparsely populated rooms. In column (b), the baseline selects di�erent bed types for the
four beds. In column (e) the baseline selects objects that are too large for the space. In contrast, our model is informed by the current arrangement and more
plausibly populates the space of the room with consistent object types.
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In our experiment, we synthesize scenes using the NADE-based
object occurrence model as follows:We �rst use the NADE to sample
occurrence counts for all possible object categories in the scene.
We then select object instances for these categories and arrange
them using our model—this isolates the speci�c object occurrence
behavior we are interested in comparing. To do this, we rejection
sample from our model until it chooses to add one of the categories
for which the NADE sampled a nonzero count, and we repeat this
process until all of the sampled category counts have been satis�ed.

In a perceptual study, participants preferred scenes generated by
our model over those generated by the baseline across all types of
rooms (Figure 9, rowOccurrence Baseline). Figure 10 shows some rep-
resentative scenes generated by each method, along with a human-
created scene from the dataset that uses the same room geometry. In
many cases, the baseline occurrence model samples a set of objects
for the room that is plausible, but too sparse for the particular room
geometry (columns (a), (c), and (d)). The opposite phenomenon can
also occur, with the baseline model sampling a set of objects that
causes the room to be too crowded (column (e) Top, the sofa is forced
into a position which blocks the door). Our model, by basing its
decision of whether to add more objects and which to add on the
current state of the scene, generally avoids these issues.

Comparison against arrangement using pairwise relationship
priors:We also conducted an experiment to see whether our model
suggests better arrangements of objects than models based on sim-
pler, pairwise relationship statistics. In our experiment, we compare
the ability of the two approaches to arrange the same, �xed set of
objects—this isolates the speci�c object arrangement behavior we
are interested in evaluating. For the �xed set of objects, we use the
objects from a scene in our dataset which was not used for training.
This also allows us to compare against the arrangement for these
objects chosen by the original human author of the scene. This
is a challenging task for any method like ours which attempts to
greedily add objects one a time into the scene: many scenes in the
dataset are tightly packed and precisely arranged, making it di�cult
to produce an alternative plausible arrangement. We are interested
in whether our priors allow our model more frequently to �nd a
reasonable re-arrangement of the scene objects.

As a baseline method for arranging objects, we use a set of learned
pairwise priors based on prior work. In constructing this baseline,
our goal was to select a set of commonly used elements in prior
approaches for object layout optimization. We learn priors for the
pairwise relative position and orientation of objects, and distance
and angle to the closest wall for each object category. Variants of
these priors are used by much prior work in 3D interior arrange-
ment [Fisher et al. 2012; Kermani et al. 2016; Merrell et al. 2011;
Yu et al. 2011]. Though priors on other properties such as symme-
try [Kermani et al. 2016], conversation [Merrell et al. 2011], hu-
man activities [Fisher et al. 2015; Fu et al. 2017], and door-to-door
navigability [Yu et al. 2011] have been used in optimizing object
arrangement, our goal is to contrast our method against a repre-
sentative purely data-driven approach using only learned pairwise
object placement priors. We represent these pairwise priors as mix-
tures of Gaussian distributions encoding the o�set between a pair
of objects, and a discrete distribution encoding the angle in the 2D

plane between the front orientations of the two objects (including
walls). During synthesis, like our method, the baseline adds objects
one at a time, in order of decreasing physical size. It evaluates the
probability of many randomly-sampled candidate placements of the
object using the pairwise priors of that object with respect to all
existing objects in the scene, and it chooses the highest-probability
position and orientation. Appendix B provides more details.
In the perceptual study, participants preferred re-arrangements

generated by our method to those generated by the baseline (Fig-
ure 9, row Arrangement Baseline). Figure 11 shows representative
scenes compared by participants in this study. While both methods
struggle to re-arrange especially tightly-packed scenes, ours per-
forms better in most cases. Columns (a) and (b) show two bedrooms
that our model manages to re-arrange plausibly, while the baseline
model resorts to implausible, non-navigable layouts to pack every-
thing into the available space. Column (e) shows re-arrangement of
a crowded o�ce; our model places the sofa against a wall, whereas
the baseline places it in an unusable con�guration close to the
desk. In column (c), the L-shape of the room makes it di�cult to
arrange the sofa, table, and chair around each other as is typical.
Our method packs the table too tightly into the sofa’s concavity,
but this is preferable to putting the chair there instead, as the base-
line does. Finally, column (d) illustrates a known failure mode of
pairwise priors: con�ict between multiple strong pairings. In this
case, both chairs cluster around one of the two desks in the room.
Our method tends to handle this case better, as this result and the
other synthesized o�ces in Figure 1 illustrate. Some of the baseline’s
shortcomings could be remedied via explicit human-factors penalty
terms, such as those mentioned in the previous paragraph. Such
terms could also improve our method, and we �nd it interesting and
encouraging that our model performs as well as it does given that it
is purely data-driven.

Comparison against human-created scenes: We then compare
scenes synthesized by our model with held-out test scenes from
our dataset. Figure 1 shows examples of such scenes for each room
type. In the perceptual study, participants showed no preference be-
tween the two types of scenes for o�ces, and they slightly preferred
the human-created scenes for bedrooms and living rooms. While
our model generates plausible scenes on average, it does exhibit a
few failure modes, some typical instances of which are shown in
Figure 14. In the top-left living room scene, the model has placed
plausible objects in plausible locations, but it did not place any seat-
ing objects such as sofas or chairs. This is partly a product of some
training set living rooms having this characteristic, and partly that
our model is more sensitive to local scene plausibility than global
plausibility. The top-right bedroom has too many nightstands next
to bed, as beds are a strong cue for nightstands, and the presence
of one does not always fully suppress the probability of adding an-
other in the same or nearby location. In the bottom-left o�ce scene,
CategoryLocation sampled a reasonable centroid location for a
wardrobe cabinet, but the model inserted by InstanceOrientation
is very long and partially blocks the door. Finally, the lower-right
bedroom scene contains two beds that are plausibly arranged when
considered independently but whose geometry does not leave room
between them to traverse the room. Improving global consistency
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Arrangement Baseline

Ours

Human

(a) (b) (c) (d) (e)
Fig. 11. Comparison of outputs using baseline arrangement model (top) and our full model (middle), with original human-designed scenes (bo�om). In
columns (a) and (b), the baseline arranges objects packed too close together and not fully making use of space against the room walls. In column (c), the space
in front of the L-shaped couch is taken up by a chair instead of the glass co�ee table. In column (d), both chairs are placed close to one of the tables, while in
column (e), the blue couch is too close to the desk. In contrast, our model generates arrangements that more plausibly make use of free space.

and enforcing a stronger coupling between object location and ge-
ometry are important avenues for future work, and challenging
problems for scene synthesis in general.

Scene variety and generalization: Finally, we examine ourmodel’s
ability to generate a variety of scenes and generalize beyond its train-
ing dataset. Figure 12 shows multiple scenes synthesized in the same
input room. Our model explores di�erent possible positions for key
objects (such as beds and sofas), chooses di�erent combinations of
objects, and generates rooms with varying functionality (e.g. living
rooms with/without televisions, o�ces accommodating di�erent
numbers of people). Figure 13 shows four bedrooms synthesized by
a model trained on a small dataset of 320 rooms. We also show the
nearest neighbor of each room in the training set, using a distance
function adapted from prior work [Henderson and Ferrari 2017].
Even with this smaller training set, our model generalizes and gen-
erates reasonable layouts that di�er from rooms in the training set.
This training set also contains no L-shaped rooms, yet our model
can still generate layouts for them that respect the room shape.

7 DISCUSSION AND FUTURE WORK
We presented the �rst deep convolutional neural network-based
system for generating object arrangements of entire rooms, given
only the room wall architecture as input. Our multi-channel top-
down view representation encodes the context of an entire room
and enables the application of convolutional networks to the domain
of 3D scene synthesis. We demonstrated that our system learns to
iteratively condition object selection and placement on the global
state of the room during synthesis. Finally, we evaluated the plausi-
bility of rooms generated using our approach against representative
object selection and arrangement baselines based on prior work.

Our system has several limitations that suggest future work. First,
we represent scenes as �at collections of objects. However, indoor
scenes exhibit hierarchy, with sets of objects forming ‘functional
groups’ (e.g. bed-and-nightstands, table-and-chairs). Such groups
also often exhibit symmetries, e.g. chairs being symmetrically ar-
ranged around a table. Our model currently struggles with such
carefully-coordinated groupings of many objects (Figure 15). Explic-
itly incorporating hierarchy and symmetry into our model could
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Bedroom Living Room O�ce

Fig. 12. Synthesizing multiple scenes in the same room. Bedroom: three
di�erent orientations of the bed and di�erent wall-adjacent objects. Living
Room: one room with a TV stand and three without, each with distinct
sofa/table layouts. O�ice: synthesized rooms accommodate di�erent num-
bers of occupants and place sofas and bookshelves where space is available.

Synthesized Room

Nearest Neighbor

Fig. 13. Examining our model’s generalization capability. Top row: Bed-
rooms synthesized by a model trained on 320 rooms. Bo�om row: For each
synthesized room, we show its nearest neighbor in the training set. From
le� to right: adding a second bed to a common layout in the dataset; di�er-
ent desk/cabinet placement, given a similar bed position; generalizing to
L-shaped rooms, which do not occur in the training set.

help address these problems, along with allowing us to tackle larger-
scale scenes, such as classrooms, restaurants, and corporate o�ces
(which the SUNCG dataset contains). Including latent variables for

Fig. 14. Typical failure cases of our model. Clockwise from top-le�: the
living room contains no seats (global inconsistency), the bedroom has too
many nightstands (local/global inconsistency), the wardrobe cabinet blocks
the door (conflict between object location and geometry), the two beds
don’t leave enough room to walk between (global inconsistency, conflict
between object location and geometry).

Fig. 15. Room types that our model currently does not handle well. Top: A
human-designed kitchen and dining room. Bo�om: Our approach struggles
with generating carefully coordinated functional groups of objects, such as
the contiguous placement of separate kitchen countertop sections and the
symmetric arrangement of chairs around dining tables.

functional object groups, perhaps in a similar manner to recent
work on learning generative models of object part hierarchies [Li
et al. 2017], could prove fruitful here.
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As mentioned in Section 5.4, sampling a scene from our model
takes several minutes on average. Much of this computation time
is spent in evaluating the CategoryLocation network for many
candidate locations in the scene. This phase could be sped up if the
computations for multiple locations could be shared. One possible
approach would be to draw inspiration from fast region proposal
networks for object detection, which use a common feature map for
the whole image when evaluating candidate object regions [Ren et al.
2015]. Or, we could design the CategoryLocation network as an
image-to-image translation function, predicting category probabili-
ties across all pixels of the output image in one forward pass [Isola
et al. 2017]. Predicting category probabilities across an entire room
at training could also facilitate better global consistency, reduc-
ing the need for CategoryLocation’s global loss Lglobal and for
tempering during sampling.

The model as described considers only �oor-supported (i.e. ‘�rst-
tier’) objects. It would be straightforward to incorporate ‘second-
tier’ objects (i.e. those supported by other objects) using a second
pass of our model, after all �rst-tier objects have been placed. It is
also possible to include wall-mounted objects such as clocks and
paintings by using multiple orthographic views as input to our
networks, i.e. a top-down view along with a wall-facing view.
More broadly, our model makes no major assumptions speci�c

to the domain of interior room design. We believe that deep convo-
lutional priors extracted from multi-channel view representations
such as the ones we have presented open up new possibilities for
many application domains that involve reasoning over 3D scene
structure. We hope that others can build on this �rst step we have
taken into learning deep convolutional scene generation priors.
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A DATASET FILTERING
We apply the following �lters to SUNCG scenes to produce our
training/test datasets:
Low-quality rooms: Each SUNCG scene has been quality-rated
by three human raters. We discard all rooms that do not have the
highest rating, as well as any remaining rooms with large object
interpenetrations.
Aggregate objects:We remove rooms containing objects that are
actually sets of multiple objects, e.g. chair_set and double_desk.
Architectural features: We �lter out rooms containing objects
that are actually architectural features which alter the room geome-
try, such as partition, column, stairs and arch.
Inhabitants:We remove objects representing people and pets.
Infrequent objects:We �lter out rooms containing unusual, infre-
quently occuring object categories. Speci�cally, we �lter for cate-
gories that occur in less than 5% of rooms and are not functionally
important, e.g. vacuum_cleaner, �sh_tank, cart, tripod.
Outlier room sizes: We are interested in modeling residential-
scale rooms, and our image-based scene representation must �t the
extents of all training rooms. Thus, we �lter out rooms larger than
6m⇥6m in �oor plan size and taller than 4m. We also �lter outliers
in terms of object density by removing rooms with fewer than 4 or
greater than 20 objects.
Rugs: We remove �oor rugs, as they are very frequently non-
uniformly (and thus non-physically) scaled to a large range of sizes
and aspect ratios (up to the size of an entire room), making them
inappropriate for category-based analysis.

B BASELINE OBJECT ARRANGEMENT MODEL
Existing object arrangement methods di�er in terms of input/output
assumptions, datasets, and user interactivity, making fair compari-
son hard. We select data-driven model elements common to multiple
approaches to construct a representative baseline.
We learn our object arrangement baseline model by extracting

pairwise observations for all objects in each room type. The pairwise

observations in the training set are used to estimate parameters for
three types of priors:
• Relative 2D o�set between closest points on object oi and
point on reference object or in coordinate frame of or .
• Relative 2D clearance of object oi from closest point on a wall
in coordinate frame of oi , and angle between front vector of
oi and o�set to closest point on wall in frame of oi .
• Relative orientation of front vector of oi relative to front
vector of or in coordinate frame of or .

Parameter estimation. The 2D o�sets and 2D clearances between
objects, and between an object and a wall point are used to estimate
the parameters of a Gaussianmixturemodelp (� ) =

PK
i=1 �iN (µi , �i ).

We use variational Bayesian estimation to infer the weights �i of
up to K = 5 components, with a tied covariance matrix between
components, and a Dirichlet process concentration prior set to 1/K .
The angles characterizing relative front orientation between objects
are used to estimate the PDF over the angular domain as a histogram
discretized into 16 equal bins of width �/8.
Synthesis procedure. At synthesis time, we order all objects to be
arranged by decreasing bounding box volume. For each object, we
uniformly sample 2D positions on the �oor of the room, and assign
one of eight cardinal orientations at random. The sampled position
and orientation is checked for collisions with other objects or room
wall geometry. If collisions exist, we take a new random sample.

We sample n = 2000 times and take up tom = 200 non-colliding
candidate placements. We evaluate the probability of each candidate
placement by treating the object to be placed as a reference object
and computing the pairwise o�set and orientation of all present
objects and the closest point on a wall. The pairwise o�set, clearance
fromwall, and relative orientations are evaluated against all pairwise
priors to obtain the relative o�set probability po (oi ,or ), relative
front angle probability pa (oi ,or ), and wall clearance and orientation
probability pw (oi ,pw ) where pw is a point on a room wall. The
overall log probability of a candidate placement x is then:

log(p (x )) = pcooc (wo log(po (x )) +wa log(pa (x )) +ww log(pw (x )))

where pcooc is the co-occurrence probability of the object category
pair, estimated from the ratio of observations involving the pair out
of all pairwise observations in the training set. We sum this pairwise
log probability over all pairs involving the object to be placed, to
estimate the likelihood of the candidate placement. We then take
the placement with the maximum probability, and proceed to the
next object in order of decreasing size. Arrangement ends when the
smallest object has been placed. As this synthesis procedure has
no mechanism for automatically rejecting questionable scenes, we
disable that feature in our system in comparisons between the two.
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