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Abstract

We address the problem of predicting affordances for
dense 3D geometry scans of real-world scenes. Using an
RGBD camera setup we observe people interacting with ob-
jects and learn the correlation between body part positions
and interacted geometry. We encode this information as af-
fordance maps over 3D geometry and predict affordances
for novel scenes where no observations are available.

1. Introduction
We present a work in progress report for a project aiming

to learn affordances directly from observations of people in
indoor scenes. The concept of affordances has been shown
to be useful for describing potential human actions [3].
Prior work has leveraged affordances for a variety of ap-
plications: improving human robot interaction [12], plan-
ning for object placement with robots [6], and detecting
and anticipating human activity in robotics [8, 9]. Other
recent work has focused on hallucinating human pose pres-
ence using the concept of affordances [5]. In contrast to all
this work, we focus on predicting affordances over dense
3D meshes with no annotations. The closest prior work to
our project predicts the presence of sittable objects by sam-
pling virtual scenes with a posed 3D model of a person in
the seated position [4]. We focus on expanding this latter
work by learning directly from observations of people as
they perform a variety of actions in real scenes.

Our key idea is that by observing these human interac-
tions with objects in everyday scenes we can empirically
estimate the correlation of body part positioning during ac-
tions to properties of the scene and its objects. From such
observations, we extract likelihoods of interactions and en-
code them as affordance maps: probability functions over
over the 3D geometry of a scene describing the likelihood
of human actions taking place. For example, the seat of a
chair should have a high “sittability” affordance expressed
as a high likelihood of hips being in contact with the top
surface of the seat. We use this encoded knowledge to pre-
dict interactions in scenes without activity observations. We

Figure 1. Top left: example input reconstructed 3D geometry. top
right: segmented mesh. Bottom left: observed interaction with
objects in scanned scene. Bottom right: tracked body part posi-
tions with activated 3D mesh segments. In this example the per-
son’s hips activate the seat surface, table, and laptop.

show that we can transfer affordance maps from observed
scenes to novel environments.

2. Method

We first obtain 3D reconstructions of scenes by scan-
ning them with the Kinect sensor and using a voxel fusion
framework [11]. Once the 3D mesh has been obtained,
we oversegment the geometry using a graph segmentation
method [2] using surface normals, as described by recent
work [7]. See Figure 1 (top row) for an example.

We then place a Kinect One sensor in a static position
observing the scene and record people as they carry out
common daily activities. The positions of body parts within
the 3D scene are tracked using the Kinect sensor and stored
in addition to the color and depth frames. We scanned in
four scenes: an office, a conference room, and two hallway
seating areas. In these scenes, we recorded two subjects (6
sessions per subject) as they carry out common actions in-
cluding sitting in chairs, using laptops, reading books and
writing on whiteboards. The average observation time was
about two minutes, and the total recording time was approx-
imately 30 minutes.
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The recordings were annotated by a volunteer who indi-
cated time ranges over which actions were performed (e.g.
“reading book”, “typing on laptop”). Figure 1 (bottom row)
shows an example annotated as “typing at laptop” and “sit-
ting on chair”. Using these annotations, we extract from
each annotated time range all body part positions and the
closest 3D segment within 30cm of that body part. We
fit oriented bounding boxes to each segment and compute
simple geometric properties such as centroid height over
ground, size along each dimension, and aspect ratio be-
tween dimensions. We used this set of simple geometric
features in our preliminary experiments and for the pre-
sented results, but more advanced geometric features can
better discriminate between mesh segments.

To predict affordance maps, we train a binary predictor
for each body part and each action using the segment fea-
tures of segments close to the body part during that action.
We use a random forest classifier trained with 10 trees using
6 randomly chosen segment features. We predict interac-
tions in two scenes where no observations have taken place:
a living room and a bathroom. The scenes are scanned and
segmented, and we predict the likelihood of body part con-
tact for each segment (see Figure 2). Despite the simplistic
approach, we see plausible predictions for body part and ob-
ject interactions in novel scenes. The success of this simple
method indicates that the input data is highly informative.

3. Future Work
We plan to continue with our data acquisition by col-

lecting a broader variety of scenes and action recordings.
We will investigate more advanced learning methods that
better account for the geometrical context of actions by
jointly considering object segments and features of the hu-
man pose. Our longer term goal is to work on grounding
action terms such as “reading a book” to the concrete phys-
ical properties of the object and body part involved. We
aim to construct a semantic representation for actions us-
ing these interactions. For example, we would like to learn
that “sitting” constitutes resting of the hips on flat surfaces
at roughly knee height. This form of attributed representa-
tion [10] can be highly beneficial for a variety of applica-
tions such as zero-shot learning of human actions [1], and
for scene understanding through affordances.
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