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Abstract

Modeling virtual environments is a time consuming and expensive
task that is becoming increasingly popular for both professional and
casual artists. The model density and complexity of the scenes rep-
resenting these virtual environments is rising rapidly. This trend
suggests that data-mining a 3D scene corpus could be a very pow-
erful tool enabling more efficient scene design. In this paper, we
show how to represent scenes as graphs that encode models and
their semantic relationships. We then define a kernel between these
relationship graphs that compares common virtual substructures in
two graphs and captures the similarity between their correspond-
ing scenes. We apply this framework to several scene modeling
problems, such as finding similar scenes, relevance feedback, and
context-based model search. We show that incorporating structural
relationships allows our method to provide a more relevant set of re-
sults when compared against previous approaches to model context
search.

Keywords: 3D model search, scene modeling, graph kernel, struc-
tural relationships

1 Introduction

A growing demand for massive virtual environments combined
with increasingly powerful tools for modeling and visualizing
shapes has made a large number of 3D models available. These
models have been aggregated into online databases that other artists
can use to build up scenes composed of many models. Numerous
methods for querying a model database based on properties such as
shape and keywords have been proposed, the majority of which are
focused on searching for isolated objects.

When a scene modeler searches for a new object, an implicit part of
that search is a need to find objects that fit well within their scene.
This task has many parallels to existing approaches for suggestion-
based modeling interfaces, which offer model parts as relevant sug-
gestions during object modeling [Funkhouser et al. 2004; Chaud-
huri and Koltun 2010]. Understanding which objects best fit into
a scene requires developing a way to compare the relevant parts of
the supporting scene against scenes already in the database. The
focus of this work is on representing scenes in a way that captures
structural relationships between objects, such as coplanar contact
or enclosure, and can enable this type of comparison.

Scene comparison is a challenging problem because scenes con-
tain important structure at many different resolutions. The chal-
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Figure 1: A set of scenes in the Google 3D Warehouse with “living
room” in their scene name. Many properties of a scene are not
reflected well in the scene name. For example, a user looking for
models to add to an entertainment center would only be pleased
with the three scenes on the bottom. All images in this paper are
used with permission from Google 3D Warehouse.

lenge of comparing highly structured data occurs in a variety of
fields, such as web search [Habegger and Debarbieux 2006], pro-
tein function prediction [Borgwardt et al. 2005], and image classifi-
cation [Lazebnik et al. 2006]. In all of these problems, attempting to
directly compare the finest-level data is rarely successful. Instead,
the data is often transformed into a representation that enables the
comparison of important features. In this work, we will show how
to transform scenes into a relationship graph whose nodes represent
semantically meaningful objects, and whose edges represent differ-
ent types of relationships between nodes. This graph representation
greatly facilitates comparing scenes and parts of scenes.

One simple approach to scene comparison is to directly compare
the tags artists have provided for a scene or the name attached to
the scene. Unfortunately, while a scene name can provide useful
information about the scene’s category, it cannot easily express the
stylistic variation within these categories. Likewise, it is challeng-
ing for the scene tags to encompass all the interesting substructures
within the scene. In Figure 1, we show nine scenes retrieved from
Google 3D Warehouse using a keyword search for “living room”.
Understanding the relationships between these scenes requires a
method to compare different aspects of the scene’s internal struc-
ture. These problems all demonstrate the need for a more effective
way to characterize and compare the substructure of scenes.

In this work we will describe how we can take a 3D scene and
extract a set of spatial relationships between objects in the scene.
We show how we can use this set of spatial relationships to de-
fine a positive-definite kernel between any two 3D scenes. We use
this kernel to execute several different types of queries for complete
scenes that incorporate the structural relationships between objects.
We show how our scene kernel can also be used to search for mod-
els that belong in a particular context and have a specified spatial
relationship to other objects. For example, a user could issue a
search for models that can be hung on a wall in the bedroom they
are modeling.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 34, Publication date: July 2011.



2 Background

2.1 3D Model Search

Many techniques have been developed for querying 3D model
databases. Three common approaches are to use a keyword search,
to ask for models that are similar to an existing 3D model, or to
provide a rough sketch of the model [Funkhouser et al. 2003; Chen
et al. 2003]. These similarity queries usually work by reducing the
models to a feature space that can be readily compared to produce a
distance metric between any two models [Tangelder and Veltkamp
2008]. Although these methods are not designed for comparing en-
tire scenes, determining the similarity between two isolated models
is an important subroutine for a scene comparison algorithm.

Another approach to 3D model search uses a partial scene as con-
text [Fisher and Hanrahan 2010]. In this work, the user places a
query box in the scene and the algorithm searches for models that
belong at this location. Models in the database are ranked by the
similarity of their spatial offsets to objects in the supporting scene.
Only pairwise relationships between objects are considered. Be-
cause this method uses only geometric relationships between ob-
jects, it is very sensitive to their relative positions in scenes. One
goal of our work is to develop context-based search queries that in-
corporate the semantic relationships between objects and can reflect
complex scene properties not well captured by pairwise geometric
comparisons.

2.2 Scene Comparison

A small number of attempts have been made at comparing 3D
scenes. One approach works by partitioning the mesh of each object
into a set of regions, and forming a graph by connecting adjacent
regions [Paraboschi et al. 2007]. A feature vector for each graph is
constructed using the eigenvectors of the spectral decomposition of
the graph topology. This method is sensitive to the mesh segmen-
tation and was not tested on scenes with a large number of objects.
Also, because their focus was on manifold meshes it does not map
well to the datasets we explore. Nevertheless, it is similar to our ap-
proach in that it first reduces scenes to a graph and then compares
two scenes using properties of their graphs.

A problem that has many parallels to scene comparison is image
comparison, where the goal is to relate two images based on their
semantic content. One approach uses local self-similarities of im-
age regions to construct descriptors that can robustly compare vi-
sual entities [Shechtman and Irani 2007]. Another approach to im-
age comparison is to first segment the image into regions and then
construct a graph by connecting regions that are touching [Har-
chaoui and Bach 2007]. Two regions are compared by using their
color histograms. The images can then be compared by looking at
their respective segmentation graphs. Our approach can be seen as
the natural extension of this idea to 3D scenes: we first segment
our scene into meaningful objects, then insert edges that represent
relationships between pairs of objects.

2.3 Graph Kernel

Kernel-based methods for machine learning have proven highly ef-
fective because of their wide generality. Once a kernel is defined
between the entities under consideration, a wide range of learning
algorithms such as support vector machines can be applied [Cris-
tianini and Shawe-Taylor 2000]. In addition, techniques such as
multiple kernel learning can be used to intelligently combine re-
sults from a large number of kernels [Bach et al. 2004].

There is considerable work on defining kernels between data types

containment encircled circlement
contact surface contact support
attachment adhesion hanging
piercing impaled proximity
above below vertical equality
horizontal support front behind
viewport equality

Table 1: A list of spatial primitives used to study how humans rea-
son about spatial relationships [Feist 2000]. The relationships used
in this paper are shown in bold.

that are highly structured [Shawe-Taylor and Cristianini 2004]. In
particular, several different kernels between two graphs have been
proposed [Kashima et al. 2004]. These have been successfully ap-
plied to a variety of problems such as molecule classification [Mahé
et al. 2004] and image classification [Harchaoui and Bach 2007].

In its most general form, a graph kernel takes as input two graphs
with labeled nodes and edges, a kernel knode(na, nb) defined be-
tween node labels and a kernel kedge(ea, eb) defined between edge
labels, and returns a non-negative real number reflecting the sim-
ilarity between the two graphs. The node and edge kernels used
depend on the types of labeling used and are application specific.
In our work, nodes represent individual objects or collections of ob-
jects, and we can use any of the model comparison techniques used
in 3D model database search. Our edges represent different types
of relationships between objects, and the kernel used depends on
the types of relationships.

Given node and edge kernels, constructing an efficient kernel over
graphs is a challenging problem with a diverse set of existing ap-
proaches [Gartner et al. 2003]. One method that has proven very
successful is to first reduce the graph to a finite set of strings, and
then use kernels defined over these strings. In particular, a graph
walk kernel can be defined by considering all walks of a fixed
length as the set of strings. As we will see, this admits a sim-
ple and efficient dynamic programming solution. Another mapping
from graphs to sets of strings is to consider all possible α-ary tree
walks in the graph of a fixed depth [Harchaoui and Bach 2007].
Unfortunately, we found tree walks to be intractable for our prob-
lem because there is not a natural way of ordering the edges around
a node; successful applications for this type of graph kernel have
relied on properties like graph planarity to obtain such an ordering.
It has been shown that as long as the underlying node and edge
kernels are positive semi-definite, the resulting walk and tree walk
graph kernels will also be positive semi-definite [Shawe-Taylor and
Cristianini 2004].

2.4 Spatial Relationships

In order to represent a scene as a graph, we need a way to take
the geometric representation of the scene and produce a set of re-
lationships between pairs of objects. These relationships might be
largely geometric in nature (“object A is horizontally displaced by
two meters relative to object B”) or largely semantic (“object A is
in front of object B”). Capturing semantic relationships is desirable
because they are are more stable in the presence of object and scene
variation.

Computer vision has used the spatial relationships between two ob-
jects in a photograph to assist with problems such as scene content
understanding and object categorization. For example, many ob-
jects and materials are difficult to tell apart (sky vs. water) but can
be disambiguated using spatial relationships (sky is rarely found
below grass). One approach uses a conditional random field to
maximize the affinity between object labels using semantic rela-
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tionships [Galleguillos et al. 2008]. The relationships they consider
are {inside, below, around, above}. Although these are useful ex-
amples of relationships between objects or materials in 2D images,
they are not representative of semantic relationships between 3D
shapes. Other research in computer vision has used prior infor-
mation about supporting surfaces to improve object detection [Bao
et al. 2010].

Psychologists have tried to understand what set of spatial primitives
humans use to reason about spatial concepts [Xu and Kemp 2010].
Although the nuances of human spatial understanding are too com-
plicated to construct a comprehensive list of all possible primitives,
in Table 1 we show one list of spatial primitives that has been used
with some success. Our goal is to test for these relationships given
only the geometry of two objects. Many of these relationships are
highly geometric in nature (circlement, above, containment), but
some are very difficult to infer from geometry alone (attachment
vs. adhesion). Work in computer vision has looked at using qual-
itative relationships between objects in images such as attachment,
support and occlusion to infer implicit geometric information from
object labels [Russell and Torralba 2009].

3 Representing Scenes As Graphs

Our algorithm takes as input a set of scenes represented as scene
graphs. We start by constructing a corresponding relationship
graph for each scene. The nodes of a relationship graph represent
all objects in the scene and the edges represent the relationships be-
tween these objects. Our relationship graph representation is simi-
lar to the 3D parse graphs used in image understanding [Gupta et al.
2010]. For now, we will assume that our scene graphs are good seg-
mentations of the scene and that all nodes in the input scene graphs
correspond to meaningful objects (excluding nodes with no geom-
etry and one child node). This means that, for example, we assume
nodes are not over-segmented down to the level of individual trian-
gles. This property is not true in general and real scene graphs will
need additional processing to obtain a set of corresponding mean-
ingful objects — see Section 5. Each non-transform node in the
processed scene graph corresponds directly to a node in our rela-
tionship graph. Given the nodes of the relationship graph, we then
determine the set of relationships between the nodes, thus creating
an edge set for the relationship graph.

Good relationships should capture features of the scene that cor-
respond with spatial primitives used by humans. We have used a
subset of the relationships in Table 1 as our set of possible relation-
ships. We chose relationships that were highly discriminative and
could also be determined using only geometric tests.

We define a polygon in mesh A to be a contact polygon with respect
to mesh B if there is a polygon in mesh B such that the distance
between the two polygons is less than a small epsilon, and the angle
between the unoriented face normals of the polygons is less than
one degree. The results in this paper use a contact epsilon of 2mm,
using the unit scaling provided with the scene. For the databases
we use, we also have a well defined gravity vector that describes
the global orientation of the scene.

Below is a list of the relationships we chose and the process used to
test for them:

• Enclosure: Mesh A is enclosed inside mesh B if 95% of the
volume of mesh A’s bounding box is inside the bounding box
of mesh B.

• Horizontal Support: Mesh A is horizontally supporting
mesh B if there exists a contact polygon in mesh A whose
face normal is within one degree of the gravity vector.

Study

Computer

Keyboard

Monitor Chair

Books

Book

Book

Desk

BookBook

Scene graph parent-child relationship Surface contact relationship

Figure 2: A scene and its representation as a relationship graph.
Two types of relationships are indicated by arrows between the ob-
ject nodes.

• Vertical Contact: Mesh A is in vertical contact with mesh B
if there exists a contact polygon in mesh A whose face nor-
mal is within one degree of being perpendicular to the gravity
vector.

• Oblique Contact: Mesh A is in oblique contact with mesh B
if there exists a contact polygon that does not satisfy any other
test.

The tests are performed in the order given and an edge of the cor-
responding type is created between two objects for the first test that
is satisfied. In addition to the above relationships we also retain the
original parent-child edges from the scene graph as a separate type
of relationship. Figure 2 is a simple example illustrating the re-
sulting relationship graph. Object nodes can be connected by both
contact and scene graph inheritance relationships. Note how the
monitor and keyboard nodes are both scene graph children of the
computer node.

4 Graph Comparison

By constructing a node and edge set for each input scene we obtain
its representation as a relationship graph. Our goal is to compare
two relationship graphs or subparts of relationship graphs. To ac-
complish this comparison we first need a way to compare individual
nodes and edges in these graphs. These will be key subcomponents
in our graph kernel.

4.1 Node Kernel

The nodes of a relationship graph represent objects within the
scene. Each node contains a number of features that relate to the
identity and semantic classification of a particular object. These
properties include the size of the object and the geometry, tags, and
texture of the underlying model. In this paper we adapt an exist-
ing approach to model comparison which uses a combination of tag
and geometry descriptors to construct a kernel between two mod-
els [Fisher and Hanrahan 2010]. Each function is defined such that
it indicates similarity of the model pair with respect to the chosen
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metric and is itself a positive semi-definite kernel. We have con-
structed all our kernels to be bounded between 0 (no similarity) and
1 (identical).

Model Identity Kernel: A simple Kronecker delta kernel which
returns whether the two models being compared are identical. We
take two models to be identical if they have nearly identical geom-
etry and texture — see Section 5 for specifics. We represent this
identity kernel as δrs for two arbitrary models r and s.

Model Tag Kernel: Each model may be tagged with a primary
and secondary tag. A simple example is a desk lamp which would
have a primary tag of “lamp” and a secondary tag of “desk”. In a
given model comparison, if both primary and secondary tags match
we return a value of 1. Since there is no clear way to quantify
partial tag matches, we empirically choose to return values of 0.5
and 0.1 for matches only in primary tags and only in secondary tags
respectively. If the models do not share any tags, we return a value
of 0. We let ktag(r, s) represent this kernel.

Model Geometry Kernel: We use 3D Zernike descriptors to com-
pare the geometry of two models [Novotni and Klein 2003]. In or-
der to compute a Zernike descriptor for a model we closely follow
previous work using Google 3D Warehouse model data [Goldfeder
and Allen 2008; Fisher and Hanrahan 2010]. The geometry is nor-
malized to a unit cube, voxelized onto a 1283 grid and thickened by
4 voxels. This grid is used to compute a 121-dimensional Zernike
descriptor. The distance between two models is then normalized
by estimating the local model density. Let drs denote the Zernike
descriptor distance between models r and s, and gi(n) the distance
to the nth closest model from model i. The model geometry kernel
is given as:

kgeo(r, s) = e
−
(

2drs
min(gr(n),gs(n))

)2

(1)

The minimum value of gi(n) is chosen as the normalization term
and we empirically set n = 100 for all of our results.

Final Model Kernel: We combine the above kernels into a fi-
nal node kernel, using the same weights as in Fisher and Hanra-
han [2010]:

knode(r, s) =

σ(r)σ(s) (0.1δrs + 0.6ktag(r, s) + 0.3kgeo(r, s)) (2)

The σ(r) and σ(s) terms are node frequency normalization scalars
whose computation is described in Section 4.4. The result of this
kernel evaluation is clamped to 0 if it is less than a small epsilon
(ε = 10−6). This model kernel can be precomputed between all
possible models in the database. We found that this precompu-
tation was dominated by the nearest neighbor search in the 121-
dimensional Zernike descriptor space, but still took less than a
minute for all models in the database.

4.2 Edge Kernel

We now define an edge kernel to provide a similarity metric be-
tween edges representing relationships. In our implementation we
choose to represent each relationship as a different edge with a sim-
ple string label indicating the type. The kernel between two edges e
and f with types indicated by labels te and tf respectively, is then
simply kedge(e, f) = δtetf . Although we considered performing
a more discriminative comparison between relationships, assigning
partial matches (values less than 1) runs the risk of devaluing func-
tionally similar relationships.

Node kernel evaluations Edge kernel evaluations

0.6 0.9 0.41.0 1.0

r1 r2 r3

e1 e2

s1 s2 s3

f1 f2

Figure 3: Comparison of two walks. Left: The two scenes being
compared. Right: Two walks in each scene, both rooted at the lamp
node. The two walks are compared by taking the product of kernel
evaluations for their constituent nodes and edges. The similarity
between these two walks is 0.6 ∗ 1 ∗ 0.9 ∗ 1 ∗ 0.4 = 0.22.

4.3 Graph Kernel

Given node and edge kernels we now define a graph kernel to per-
form the comparison between two scenes. Our approach is heav-
ily based on a graph kernel algorithm used for image classifica-
tion [Harchaoui and Bach 2007].

A walk of length p on a graph is an ordered set of p nodes on the
graph along with a set of p − 1 edges that connect this node set
together. Unlike a path, nodes in a walk may be repeated.

Let W p
G(r) be the set of all walks of length p starting at node r in a

graphG. As defined earlier, knode(r, s) and kedge(e, f) represent the
node and edge kernels. Considering nodes r and s in relationship
graphsGa andGb respectively we now define the p-th order rooted-
walk graph kernel kpR:

kpR(Ga, Gb, r, s) =∑
(r1,e1,...,ep−1,rp)∈W

p
Ga

(r)

(s1,f1,...,fp−1,sp)∈W
p
Gb

(s)

knode(rp, sp)

p−1∏
i=1

knode(ri, si)kedge(ei, fi)

This kernel is comparing nodes r and s by comparing all walks of
length p whose first node is r against all walks of length p whose
first node is s. The similarity between two walks is evaluated by di-
rectly comparing the nodes and edges that compose each walk using
the provided kernels for these object types. In Figure 3, we visual-
ize one step of the computation of k2R for two nightstand scenes.

If we also define NG(x) to be the set of all neighboring nodes of
x in the graph G we can formulate a recursive computation for
kpR(Ga, Gb, r, s):

kpR(Ga, Gb, r, s) = knode(r, s)×∑
r′∈NGa (r)

s′∈NGb
(s)

kedge(e, f)k
p−1
R (Ga, Gb, r

′, s′) (3)
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where e = (r, r′) and f = (s, s′) are the edges to neighboring
nodes of r and s. The above computation can be initialized with the
base case k0R(Ga, Gb, r, s) = knode(r, s). We can use this recursive
expression to construct a dynamic programming table for each pair
of relationship graphs. We store values for all node pairs between
the two graphs and for all walk lengths up to p. The kernel we
have thus defined can be used to compare the local structure of two
relationships graphs rooted at particular nodes within those graphs.

We can use kpR to define a p-th order walk graph kernel kpG which
compares the global structure of two relationship graphs. Here we
use VG to mean the set of all nodes of graph G. This kernel is
computed by summing kpR over all node pairs across the two graphs:

kpG(Ga, Gb) =
∑

r∈VGa
s∈VGb

kpR(Ga, Gb, r, s) (4)

The running time complexity for computing kpG between two
graphs is O(pdGdHnGnH) where dG is the maximum node de-
gree and nG is the total number of nodes in the graphs [Harchaoui
and Bach 2007]. As we show in Section 6.4, in practice these eval-
uations are very fast.

The graph kernel we have presented can be interpreted as embed-
ding the graphs in a very high dimensional feature space and com-
puting an inner product 〈Ga, Gb〉. While inner products are widely
useful for many applications, some applications such as the Gaus-
sian kernel K(Ga, Gb) = e−‖Ga−Gb‖2/σ operate on a distance
metric instead of an inner product. Given a positive-definite kernel,
there are many possible distance functions that can be defined over
the feature space spanned by the kernel [Ramon and Gärtner 2003].
For a p-th order walk graph kernel kpG, a simple corresponding dis-
tance function is:

d(Ga, Gb) =
√
kpG(Ga, Ga)− 2kpG(Ga, Gb) + kpG(Gb, Gb)

4.4 Algorithm Details

Graph Kernel Normalization. Normalization of the walk graph
kernel is used to account for the fact that scenes containing many
objects will tend to match better against all other scenes by virtue
of their broader coverage of the dataset of models and relationships.
For example, the relationship graph formed by a union of all the
scenes in the database would match well to every scene. To com-
bat this problem, we implement a normalization term by dividing
the result of a graph kernel by the maximum of the evaluation be-
tween each graph and itself. For each graph kernel kG we have a
normalized graph kernel k̂G:

k̂G(Ga, Gb) =
kG(Ga, Gb)

max (kG(Ga, Ga), kG(Gb, Gb))

This normalization ensures that a graph will always match itself
with the highest value of 1 and other graphs with values between 0
and 1.

Node Frequency Normalization. The importance of an object
within a scene is intrinsically affected by the number of occur-
rences of that object within the scene. For instance, the existence
of a book model in a scene is an important cue from which we can
infer the type of room the scene is likely representing. The exis-
tence of hundreds more book models will naturally influence our
understanding of the scene. However, the relative importance of
each additional book diminishes as it is in essence an instance of
an agglomeration. In order to represent this we introduce an occur-
rence frequency normalization factor for the node kernel evaluation

following a term weighting approach used for document retrieval
normalization [Salton and Buckley 1988]. Concretely, for a node
na in the set of nodes VG of a graph G:

σ(na) =
1∑

nb∈VG
knode(na, nb)

This normalization factor scales the node kernel evaluation defined
in Equation 2. The computed value for na is equal to 1 if the node
is unique and decreases to 0 with more similar or identical nodes.
Using this approach we avoid the problem of large agglomerations
of object instances, such as books in a library, drowning out other
interesting structure in a scene.

Architecture Comparisons. Architectural structure is hard to
compare to other architecture because it will not in general be re-
lated through geometry or tags. However, we would still like to be
able to take walks through the architectural support of a scene. To
see more clearly why this comparison is challenging, consider two
scenes that consist of a desk and a chair on top of a floor. Both
scenes contain the walk {“chair”, “floor”, “desk”} and to a human
these walks are relatively similar. However, using our definition of
kpR, these walks will not contribute to the final graph kernel term
unless the model kernel between the two floor models in the scenes
is non-zero. Although it is possible that these nodes may have been
explicitly tagged as architecture or the two rooms may have an ex-
tremely similar design (and thus will have similar Zernike descrip-
tors), in many cases the model kernel we have proposed will evalu-
ate to zero for two different room architecture models.

We use the Google SketchUp database (see Section 5), where al-
most all of the the scene’s architectural geometry is directly at-
tached to the root node. Our approach is to let our node kernel al-
ways evaluate to a minimum value for root nodes so that paths going
through the root node are not eliminated from consideration. We
therefore enforce knode(root(Ga), root(Gb)) ≥ c where root(G)
is the root node of a graph G and c is a constant that we set to 0.1
for this work. For other databases, explicit or automatic tagging of
architecture could be used instead of this approach.

Parameter Selection. Our graph kernel, kpG, is parameterized by
p, the length of the walks taken. Different choices for pwill capture
scene features at different resolutions, and it is unlikely that a single
value of p will be the best kernel for any given task. This is a very
common problem in machine learning and several multiple kernel
learning techniques have been developed to allow learning tasks to
benefit from information provided by multiple kernels [Bach et al.
2004]. Although it is possible for machine learning classifiers to di-
rectly make use of multiple kernels, it is very convenient to define
a single kernel that is a linear combination of kpG for different val-
ues of p. We use the term “basis kernels” to refer to the individual
kernels that are summed to form the final kernel. Given any ma-
chine learning task, we can use cross-validation to decide on good
weights for each of the basis kernels. Here we formulate a machine
learning task that we will use to automatically learn the parameters.

Relevance feedback is a technique used by search engines to im-
prove results. The user selects relevant scenes from a candidate list
of results, and the search engine attempts to transform the feature
space to favor results similar to ones the user marks as relevant [Pa-
padakis et al. 2008]. The input to our relevance feedback imple-
mentation is a set of scenes selected by the user, each marked as
either a good or bad response to the query. Given a specific scene
kernel, we train a soft margin support vector machine classifier us-
ing the selected scenes as the training examples. We use the sequen-
tial minimal optimization algorithm to train our SVM [Platt 1999].
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Because the SVM is only trained on the selected scenes this train-
ing is extremely fast; even if the user selects 50 scenes the SVM
optimization always took us less than 50ms. We then use this SVM
to rank all scenes in the database according to their signed distance
to the separating hyperplane.

To use relevance feedback to learn our kernel parameters we first
need to develop a training set. We suppose that we have N dif-
ferent user-designed queries (an example query might be “scenes
that contain interesting sconce arrangements”). For each task, we
assume users have gone through every scene in the corpus and eval-
uated whether it is a good or bad response to the query.

We can use this dataset to evaluate the quality of our relevance feed-
back results for a given set of parameters. For each modeling task
we randomly pick samples from the database, half from the positive
class and half from the negative class. Given a fixed set of kernel
weights, we can compute the expected classification error of our
SVM and average it over the N modeling tasks. We compute this
average classification error for a large set of possible parameters,
and choose the parameters with the lowest average classification
error. In addition to varying this over a large set of possible weights
for each basis kernel, we also search over different possible val-
ues of the soft margin parameter C. Although we found this cross-
validation approach to multiple kernel learning to be sufficient for
our purposes, it is also possible to directly optimize the weights of
the basis kernels as part of a modified SMO algorithm [Bach et al.
2004].

5 Dataset

To test the effectiveness of our algorithm, we need a set of 3D
scenes. There are several potential large scene databases. For ex-
ample, virtual worlds such as World of Warcraft and Second Life
are gigantic environments that contain large numbers of models.
Online databases such as Google 3D Warehouse also contain many
scenes that have been uploaded by artists by combining individual
models found in the database. We focus on using Google 3D Ware-
house because it is publicly accessible and contains work submitted
by a diverse set of artists who have modeled many different types
of environments. Previous work has explored the use of Google 3D
Warehouse as a scene corpus [Fisher and Hanrahan 2010].

Each scene in Google 3D Warehouse is represented using a scene
graph and almost all are modeled using Google SketchUp. For the
majority of scenes we collected, most semantically meaningful ob-
jects are contained in their own scene graph node. This separation
is often done for the artists’ own convenience – they structure their
scene objects so that related components can be easily manipulated
as a single unit. However, as has been noted in previous research,
there are still many scene graph nodes that do not correspond to
widely useful objects.

We use a very simple process to standardize the tagging and seg-
mentation in our scenes. Our approach mimics the methods used in
computer vision to construct 2D image datasets such as PASCAL,
MSRC, and LabelMe [Russell et al. 2008]. We first accumulate a
candidate list of all models in the database by considering all nodes
in the scene graphs. We define two scene graph nodes to corre-
spond to the same model if their geometry and texture are equiv-
alent. We say two nodes have the same geometry if the length of
the vector difference between their Zernike descriptors is less than
a small epsilon (Zernike descriptors are invariant under scaling, ro-
tation, and translation). Likewise, we say two nodes have the same
texture if, after scaling both textures to be the same size, the dif-
ference between their texture bitmaps is less than a small epsilon
(chosen to account for compression artifacts). We then present a
picture of each model to a human. They provide a main category

and optionally a subcategory for each model. Alternatively, they
may choose to classify the model as “not meaningful”. All root
nodes are considered meaningful, as they correspond to complete
scenes that have been uploaded to the database. While previous re-
search used tags attached to the scene graph nodes, these tags are
sparsely distributed throughout the database and are often unreli-
able and in many different languages [Fisher and Hanrahan 2010].
Our goal was to acquire a set of scenes with approximately uniform
segmentation and tagging quality.

Using this per-model information we can convert our scenes into
relationship graphs. All nodes corresponding to models marked as
meaningful by users become nodes in the relationship graph. Scene
graph parent-child relationship edges are added between a node and
its parent. If a node’s parent node does not correspond to a mean-
ingful model, we recursively move to the next parent until a node
corresponding to a meaningful model is found. Geometry-based re-
lationship edges are then added as described in Section 3, and the
resulting relationship graphs are used as the input to our algorithm.

We focus on a subset of Warehouse scenes that are relevant to a
specific category of queries. We consider all scenes that contain
more than one object and have any of the following tags: “kitchen”,
“study”, “office”, “desk”, or “computer”. In total we have chosen to
use 277 such scenes with approximately 19000 models (including
different instances of the same geometry). Indoor room scenes are
an interesting area to study because their interior design contains
structural patterns for our algorithm to capture.

Although we have observed most Google 3D Warehouse scenes to
be over-segmented, the architecture is usually not well segmented.
For scenes such as a house with multiple rooms, the architecture
itself contains interesting substructure that is often not captured in
our scene graphs. While one might imagine several ways to au-
tomatically perform this segmentation, the subset of Google 3D
Warehouse scenes we are considering are at most as complicated
as a single room and usually do not have complex architectural
substructures. Nevertheless, our algorithm can easily take advan-
tage of more detailed information about the architecture that may
be provided by some databases, such as computer-generated build-
ing layouts [Merrell et al. 2010].

6 Applications

There are a large number of applications of our graph-based scene
kernel. We have chosen to focus specifically on applications of the
scene kernel that improve scene modeling.

6.1 Relevance Feedback

Recall that kpG is parameterized by p and different choices for p
capture scene features at different resolutions. As proposed in Sec-
tion 4.4, we can use relevance feedback to perform parameter selec-
tion and determine a good aggregate kernel that captures features at
different scales.

To build a training set we presented four different users with our
scene database and asked them to think of a scene modeling task
of their choice. For example, they might want to find scenes with
interesting computer peripherals such as webcams or fax machines,
or find scenes with wall sconces that fit well in a study they are
modeling. They then classified each scene in the database as either
being a good or bad response to their task.

We use this training set for parameter selection. Our basis kernels
are walk graph kernels of length 0 to 4. We consider all possible
linear combinations of these five kernels with weights ranging from
0 to 1 at 0.1 increments. We also consider the following values
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Positive Examples Negative Examples

Figure 4: Search results using relevance feedback. Top: A user looking for scenes with interesting computer peripherals selects two scenes
they like and two scenes they do not like from the database. Bottom: The top 18 results using a scene search guided by the user’s selections.

Query Results

Figure 5: “Find Similar Scene” search results. Left: The query scene selected by the user. Right: The top six scenes in the database that
match the query. The best match is shown on the left.
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C k0G k1G k2G k3G k4G

10 0.5 0 0.1 0.1 0.3

Table 2: Weighting used for combining graph kernels with different
path lengths.
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Figure 6: Classification error using a support vector machine to
distinguish between relevant and irrelevant scenes as a function of
the number of user-selected training examples.

for the soft margin parameter C: {0.001, 0.01, 0.1, 1, 10, 100}. For
this test we used 6 positive and 6 negative examples, and averaged
the classification error over 10,000 randomly chosen training sets
and over each of the four modeling problems. The best set of pa-
rameters is shown in Table 2 and had an average classification error
of 20.9%. The varied nature of these coefficients suggests that dif-
ferent settings of our graph kernel are capturing different features
of the scenes.

In Figure 6 we compare the classification error using the weighted
kernel from Table 2 as a function of the number of training exam-
ples used. Although the classification error decreases steadily, it
remains close to 12% even when 30 positive and 30 negative train-
ing examples are used. This suggests that many of the queries de-
signed by our users contain challenging subtleties that are not easily
captured by our graph kernel.

Because the SVM ranks the scenes based on confidence, the user
is first presented with suggestions that the algorithm determines are
very likely to be relevant. In Figure 4 we show relevance feedback
results using 4 training scenes and the coefficients given in Table 2.
Even with a small number of selected scenes the algorithm is able
to infer the user’s preferences. All of the top 18 results are relevant
to the query.

At first glance relevance feedback may seem cumbersome — users
must first issue a query, classify multiple results, and finally ask for
relevance feedback based on their selections. However it is possible
for search engines to passively use relevance feedback methods by
aggregating search history information from many previous users.
For example, if a user issues a common query that the engine has
seen many times before, click-through rates or model insertion rates
could be used as a proxy to predict the relevance or irrelevance of
results.

6.2 Find Similar Scenes

One application of our scene kernel is to enable users to search
for similar scenes. We use the aggregate graph kernel described in
Table 2 to compute the similarity between the chosen scene and all
the scenes in the database. Scenes are ranked using this similarity

Study

Desk

Query

Chair

Monitor
Scene graph
parent-child 
relationship

Surface contact 
relationship

Figure 7: A model context search expressed by introducing a query
node to a relationship graph. The dotted edge represents the con-
tact relationship that connects the query node to the scene and de-
fines its context. Multiple edges of different relationship types can
easily be introduced for a single query node.

value in decreasing order.

In Figure 5 we show the top-ranked results for five different queries.
Our algorithm returns scenes that share many structural similarities
with the query scene. For example, in the first scene many results
contain a similar style of shelving. Likewise, in the second scene
the top results are all simple desk scenes with laptop computers.
These results also demonstrate the large amount of structure sharing
used by artists in Google 3D Warehouse. For example, in the fourth
scene query, the top ranked result uses the exact same models on the
top of the desk, while changing other aspects of the furniture and
layout.

6.3 Context-based Model Search

Using our framework, there is an intuitive mapping between a
context-based search for 3D models and our rooted-walk graph ker-
nel (kpR). We implement such a search by placing a virtual query
node in the graph. The relationships that the desired object should
have with other objects in the scene are defined through a labeled set
of connecting query edges. Geometry, tags, and other node prop-
erties can optionally be provided by the user to refine the query
beyond just considering relationships to other models in the scene.
Figure 7 illustrates a query for an object that is in contact with a
desk.

Once we have placed the virtual node within the query scene’s rela-
tionship graph, we then evaluate kpR between this virtual node and
all other relationship graph nodes in our scene corpus. The kpR eval-
uation for each node indicates how similar the environment around
that model is to the environment around the query node. We use
this evaluation to rank all models in the database.

In general we cannot directly apply Equation 2 because we do not
know the geometry or tags of the query node. However, we would
still like to be able to take advantage of size, geometry, or tag in-
formation if provided by the user. If any category of information is
not provided, we take this to mean that, with respect to the corre-
sponding metric, all nodes should be considered equally desirable.

Given a query node q and another node n against which the query
node is being compared, our modified node kernel for query nodes
will use tag and geometry kernels kQtag(q, n) and kQgeo(q, n). These
kernels return a constant value of 1 if q has no tag or geometry

34:8        •        M. Fisher et al.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 34, Publication date: July 2011.



Query Scene Suggested Models

Figure 8: Context-based model search results. Left: A user modeling a desk scene issues a query for a model to be placed on the desk.
Right: Highest ranked models for each query. Note how the context provided by the models in the query scene influences the categories of the
suggestions.

information respectively. Otherwise, the regular versions of the tag
and geometry kernels ktag and kgeo are evaluated for the pair (q, n).
Using these component kernels we define a context query aware
node kernel that will take into account all the provided properties
for context search query nodes:

kQnode(q, n) = σ(n)
(
0.1 + 0.6kQtag(q, n) + 0.3kQgeo(q, n)

)
(5)

The walk length parameter p in kpR controls the size of the contex-
tual neighborhood that is compared by the model context search.
When p = 0, all models are ranked by considering only the geom-
etry, tags, or size provided by the user for the query node. When
p = 1, the algorithm additionally considers the geometry and tags
of the models connected to the query node by query edges (in Fig-
ure 7, this would just be the desk model). Increasing to p = 2
and beyond provides an intuitive way of visualizing the region of
support considered by the context search.

In Figure 8 we show the results of two context-based queries. In
both cases the user is searching for models that would belong on
top of the desk in their scene. A query node was inserted into these
scenes and connected to the desk node through a horizontal support
relationship edge. We then evaluate kpR for walk length p = 3
between the query node and all other relationship graph nodes in
the database to determine model suggestions.

The results indicate how the existence of a computer and related
objects on the desk in the top scene produces computer peripheral
and accessory suggestions. In contrast, the bottom scene’s context
induces results that are more appropriate for a study desk. Also
observe that in both cases all of the highly ranked results are at least
potentially relevant — only models that have been observed to be

horizontally supported by desks (or models geometrically similar
to desks) can be highly ranked.

The context-based search algorithm presented by Fisher and Han-
rahan [2010] assumes all pairs of objects are random independent
events. In contrast, our method considers the structural relation-
ships between all objects in the scene. To illustrate the difference
between these two approaches, we modeled a desk scene with a
bowl and two cups, shown on the left side of Figure 9. Consider a
user who wants to search for other objects to place on this desk. We
want to execute this query using both methods.

There are two main differences between the formulation of context
search queries in these algorithms that need to be resolved. First,
our approach expresses the desired location as a relationship to ex-
isting objects, while their approach expresses the location as a 3D
point in the scene. We have chosen a point 10cm above the center
of the desk to correspond to our algorithm’s “horizontal contact”
relationship to the desk. Second, their algorithm makes use of a
suggested object size. Though either method can easily incorporate
a size kernel, we have chosen to make our comparisons in the ab-
sence of size information, since it is often unavailable or potentially
unreliable.

In Figure 9, we show the results using both approaches on our
database. Because our algorithm considers the structural relation-
ships in the scene it returns many plausible objects that have been
observed on desks in the database, such as lamps and speakers. On
the other hand, their algorithm considers all object pairs indepen-
dently. It returns objects such as sinks and mixers because these
objects are often found in the vicinity of bowls, cups and draw-
ers. By not considering the semantic relationships between objects,
their algorithm is not able to determine that sinks are not commonly
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Query Scene Our Method

Fisher and Hanrahan 2010

Figure 9: Left: The user asks for an object on the desk. Right:
Results comparing our method against previous work.

found on top of desks — our approach will only make such sugges-
tions if there is a scene in the database with a mixer or sink on top
of a desk.

6.4 Performance

Real-time performance is critical for practical uses of our graph ker-
nel. To evaluate the performance of our algorithm we computed the
walk graph kernel k4G between all pairs of scenes in our database.
Note that the dynamic programming table used for this computation
also stores intermediate results for all walk lengths up to p = 4. As
described in Section 4.1, we precompute the model kernel evalua-
tions between all possible models. It was very easy for us to dis-
tribute all the computations of kpG over multiple processors because
all scene comparisons can be performed independently. The aver-
age graph to graph kpG evaluation took 0.150ms. Using this average
value it would take approximately 1.5s to exhaustively compare a
query scene against a 10,000 scene database. This experiment was
run on a quad-core 2.53GHz Intel Xeon CPU. Note that this is also
the approximate cost of executing a 3D model context query — a
subcomponent of evaluating kpG between two scenes is to compute
kpR between all possible node pairs. Overall, we feel our algorithm
is fast enough for interactive use on most databases.

7 Discussion and Future Work

We have presented a novel framework for characterizing the struc-
tural relationships in scenes using a relationship graph representa-
tion. Our basis kernels compare the local information contained
in individual models and relationships, and the walk graph kernel
aggregates this information to compare the topological similarity
between two scenes. We have shown that our algorithm returns a
relevant set of results when applied to many scene modeling tasks,
including finding similar scenes and context-based model search.

The modular nature of our framework makes it very extensible. For
example, it is easy to incorporate new relationship comparisons,
such as looking at the size and shape of the contact region for ob-
jects in horizontal contact. We can also take advantage of many
advancements in graph kernels. For example, the walk graph ker-
nel is subject to “tottering”, where the walks are allowed to move
along a direction and then instantly return to the original position.
This can result in many redundant paths, but it is possible to trans-
form the input graphs so as to disallow these walks [Mahé et al.
2004].

Using a kernel-based approach to scene comparison makes it possi-
ble to leverage the substantial literature on kernel methods from ma-
chine learning and opens many related applications that can be ex-
plored. For example, classification algorithms can be used to auto-
matically classify new scenes that are uploaded to a scene database.
Semi-supervised learning can be used to propagate a sparse set of
scene tags across all scenes in the database [Goldfeder and Allen

2008]. Kernel-based clustering algorithms could be applied to the
set of models or scenes, producing clusters like “silverware” and
“table centerpieces”.

While our goal was to compare scenes in a way that coincides with
the human notion of scene similarity, there are many cases that our
approach handles poorly. First, many of our relationships rely on
two models being in planar contact; however, for our dataset we
observed that our algorithm would sometimes fail to capture the
correct spatial relationship between objects because they were rep-
resented by either inter-penetrating or floating geometry. Further-
more, many spatial primitives cannot be disambiguated by geom-
etry alone but are often used by human observers to classify rela-
tionships. More advanced shape analysis algorithms could recover
functional relationships between objects – a desk could be analyzed
with respect to the number of chairs it was designed to accommo-
date, or functional categories of objects such as containers could
be inferred. This could be done by reducing shapes to a represen-
tation such as the one used in iWIRES which better captures the
defining characteristics of an object [Gal et al. 2009]. Other geo-
metric properties such as extrinsic and intrinsic symmetries could
also be considered when comparing models – models with similar
symmetries are more likely to be related [Lipman et al. 2010].

The scenes we used to evaluate our algorithm were constructed us-
ing modeling systems such as Google SketchUp. These systems
tend to encourage generating scenes with properties leveraged by
our algorithm. For example, as artists move an object, the interface
facilitates snapping it to existing contact surfaces which helps avoid
the problem of floating or inter-penetrating objects. On the other
hand, one challenge we encountered was that many scenes were
not reasonably segmented. The scene graph is maintained mostly
for the purpose of rendering, and certain types of editing operations
can severely fragment meaningful objects into many nodes. Fur-
thermore, the link between the models in Google 3D Warehouse
and their instances in the scenes we analyzed was not easily recov-
erable.

As scene modeling tasks become more common, scene modeling
programs will likely make more of an effort to help artists maintain
a functional segmentation of their scene and better track the rela-
tionships between these objects. This will make the limited manual
segmentation we performed unnecessary and is extremely useful
for enabling user interaction in applications such as virtual worlds.
We feel that software that is aware of the relationships expressed
in 3D scenes has significant potential to augment the scene design
process.
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